p53 controls hepatitis C virus non-structural protein 5A-mediated downregulation of GADD45α expression via the NF-κB and PI3K–Akt pathways
نویسندگان
چکیده
Growth arrest and DNA-damage-inducible gene 45-α (GADD45α) protein has been shown to be a tumour suppressor and is implicated in cell-cycle arrest and suppression of cell growth. The hepatitis C virus (HCV) non-structural 5A (NS5A) protein plays an important role in cell survival and is linked to the development of hepatocellular carcinoma (HCC). However, the role of HCV NS5A in the development of HCC remains to be clarified. This study sought to determine whether GADD45α mediates HCV NS5A-induced cellular survival and to elucidate the molecular mechanism of GADD45α expression regulated by HCV NS5A. It was found that HCV NS5A downregulated GADD45α expression at the transcriptional level by decreasing promoter activity, mRNA transcription and protein levels. Knockdown of p53 resulted in a similar decrease in GADD45α expression to that caused by HCV NS5A, whilst overexpression of p53 reversed the HCV NS5A-mediated downregulation of GADD45α. HCV NS5A repressed p53 expression, which was followed by a subsequent decrease in GADD45α expression. Further evidence was provided showing that HCV NS5A led to increases of phosphorylated nuclear factor-κB and Akt levels. Inhibition of these pathways using pharmacological inhibitors or specific small interfering RNAs rescued HCV NS5A-mediated downregulation of p53 and GADD45α. It was also found that HCV NS5A protein and depletion of GADD45α increased cell growth, whereas ectopic expression of GADD45α eliminated HCV NS5A-induced cell proliferation. These results indicated that HCV NS5A downregulates GADD45α expression and subsequently triggers cellular proliferation. These findings provide new insights suggesting that HCV NS5A could contribute to the occurrence of HCV-related HCC.
منابع مشابه
HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways
Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity. During chronic HCV infection, HCV core protein is implicated in deregulating cytokine expression that associates with chronic inflammation. A20 is known as a powerful suppressor in cytokine signaling, in this study, we explored the A20 expression in macrophages induced by HCV core protein and the involv...
متن کاملLoss of NDRG2 enhanced activation of the NF-κB pathway by PTEN and NIK phosphorylation for ATL and other cancer development
The activation of nuclear factor kappa B (NF-κB) signaling has a central role in the development of adult T-cell leukemia/lymphoma (ATL) and many other cancers. However, the activation mechanism of the NF-κB pathways remains poorly understood. Recently, we reported that N-myc downstream-regulated gene 2 (NDRG2) is a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT pathway by promo...
متن کاملThe role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons.
This study investigated a possible role for a toll-like receptor 4 (TLR4)-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in rat hippocampal neurons. Cultured neurons were treated with lipopolysaccharide (LPS), a TLR4 ligand, or pre-treated with TLR4 antibodies to block TLR4 signaling. Neurons were also treated with dipotassium bisperoxo (pyridine-2-carboxyl) oxovanadate [bp...
متن کاملAntioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner.
Fas ligand (FasL) belongs to the TNF family of death ligands, and its binding to the FasR leads to activation of several downstream signaling pathways and proteins, including NF-κB and PI3K/Akt. However, it is not known whether cross-talk exists between NF-κB and PI3K/Akt in the context of FasL signaling. We demonstrate using both human renal epithelial 293T cells and Jurkat T-lymphocyte cells ...
متن کاملThe human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway
Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both...
متن کامل